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Trap — Basic non-neutral plasma

e Cylindrical Penning, or Penning-Malmberg
trap central electrode

* 3+ electrodes — 2x endcaps + electrodes
(central, compensating, Rotating wall, ...)

» All electrodes floating / ungrounded

Endcap electrodes
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Trap requirements / comparison

* Previous Gabor plasma * Proposed plasma
Primarily Nonnenmacher et al. Appl. Sci. 11 4357 (2021) ref’s [28-34] to be experimentally determined
e B-field 0.01-0.5T * B-field ~0.1T
* Electron density near Brillouin limit often * Electron density at 10-20% of Brillouin
modelled limit (i.e. 0.1-0.2 ‘Pozimski Factor’)
* Although ‘Pozimski Factor’ ~ 0.1-0.75
guote
* Plasma radius = Anode radius * Plasma radius ~ 0.3-0.5 electrode radius
* Confining voltage 2-600kV « Confining voltage ~ 60kV
= space-charge > Space charge
* Load via internal discharge e Load via ext. ‘beam’ source
* Lifetime/confinement time <1s e Lifetime - ?
* Dynamic equilibrium
* Reload rate >Hz « Reload rate - ?

* Density ~ 101> m3
* Length ~1m



Parameter space plot
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Source (beam)

FRA-2X1-2 /| EGPS-1011
ELECTRON GUN/POWER SUPPLY

1000

Hot (field assisted) cathode/filament (Thoriated tungsten) used

@
<]
=]

to produce a beam 2 o
* (Can be located in a low magnetic field, a fringe field, or a o
high (Tesla-level) field P

o

* Typically located on-axis
* Fixed & ‘transparent’ to ion beam
* Movable in/out of beam

5eV to 1000 eV

Wide-Angle Low-Energy Electron Beams from a Compact Source
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FRA-2X1-2 Electron Guns,
(a) on 2% CF and (b) Unmounted style

10 mm

Standard FRA-2X1-2 Electron Gun,
unmounted (no CFF or feedthrough)
actual size

EGA-1012 / EGPS-1012

ELECTRON GUN /POWER SUPPLY

Beam directed into trapping region
(electrodes/anode)

| 4 )

Dynamic particle trap

Static particle trap (beam capture)
u

(2-stream instability/collisions)

5eV to 1000 eV

High-Current Medium-Diameter Low-Energy Electron Beam
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Static particle trap Dynamic particle trap

P roce d ure (2-stream instability/collisions) (beam capture)
e beam — —

Trap potential

* Capture

* us—10s —!_ = -

* Study/Storage
* Times: us — 10°s
* Cooling (0.1-10s)

* Eject to MCP/P-screen
* US-ms



PHYSICS OF PLASMAS 13, 123502 (2006)

Plasma manipulation techniques for positron storage in a multicell trap
J. R. Danielson, T. R. Weber, and C. M. Surko
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nique. Operation of the trap at confinement potentials of
1 kV was also demonstrated. resulting in the ability to store
=10"" particles in a single cell. In other recent work, it has

been_shown the ; ressed radially and
intained for days using the rotating wall pression in

the newly discovered sirong-drive regime by application of a
single, fixed RW frequency, thereby eliminating the need for

4 & & 10 12 14 16 18 20 22

L, tem)

FIG. 5. (a) The dependence of plasma density on total number N for three
different confinement lengths L. of (@) 5.1, (W) 10.2, and (W) 20.3 cm. {(b)
The dependence of N on L_ for three different fill voliages: Vi (@) 300,
(W) 600, and (M) 900 V. For all experiments, the confinement voltage
V.=10kV.
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Confinement and manipulation of non-neutral plasmas

Sto ra ge - | | using rotating wall electric fields

E. M. Hollmann, F. Anderegg, and C. F. Driscoll

A “‘rotating wall”” perturbation technique epablesconfinement of up to 3 x 10° electrons or 10° ions
in Penning—Malmberg traps for peniods @i hese rotating wall electric fields transfer torque
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FIG. 1. Schematic of the IV Penning—Malmberp trap used for electron and
ion plasma experiments. Electrons are typically confined in the region S5
—511; Mz" ions (shown) are typically confined in the region $11—R13 A
laser diagnostic 15 used for ion plasmas: a collimator plate and Faraday cup
diagnostic is used for electron plasmas. Azimmthally-dependent modes are
driven and detected with sectored rings (55 and 511).

104 -10% m3




PHYSICS OF PLASMAS 13, 022101 (2006)

Finding the radial parallel temperature profile in a non-neutral plasma
Sto ra ge - | | | using equilibrium calculations on experimental data

Grant W. Hart and Bryan G. Peterson

Our experiment is a fairly typical Malmberg-Penning
trap with a nominal plasma length Dild a ring radius

of 4 cm. Typically our plasmas had a radjus
The central density in these data is fflear 7 X 10" m™
. 8% 107 Torr.

se—specific data . .
Ty o 26 : o g5 pma _— B-field=? (original work 40-675gauss
sets _a typical particle confinement time in this machine 1s
@ Rp/Rw ~0.6

1. Notice large Archimedes spiral hot cathode filament
C c
2. RW unused

FIG. 1. Electric and magnetic fields in a Malmberg-Penning trap.



J.R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko

Sto ra ge -— | V Rev. Mod. Phys. 87, 247 — Published 17 March 2015

- * Details difficult to come by due to
aj commercial considerations
| ; * Lifetime likely annihilation limited (but
e 10s seconds)
* Pressures not unlike that possible in

1a 20 a0 40

frequency (MHz) * G a b 0 r I e n S

FIG. 25 Positron density vs. drive feeepresey in the First Point
Scientific, Inc. RW experiment ming buffer gas
cooling ‘m ie solid line is the no-

slip condition TWrw = @r)- X osit depsity
reached was a record for leptonaC-- 17 % of the Brillouin limit
The sharp dips at specific frequencies s iy
(5. Greaves, unpublished. )
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density (em3)

Electrons stream along the unifor

magnetic field B into a grounded cylindrica

of radius R,,=7.1 cm, and are reflected by a neg

ative potential applied to ring C at the far end.

The resulting electron density is such as to give

a space- charge potential @4(r) = ¢,(r) out to the

this oceurs for a density n,=V,/
which is approximately con-

¢. Measurement of the propaga.
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FIG, 1. The cylindrical confinement geometry. W0 w0 0 w0 e
HELIUM PRESSURE {Torr)

Phys. Rev. Lett. 50 167 (1983) Phys. Rev. Lett. 44 654 (1980)
Phys. Plasmas 1 1123 (1994)
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The system is normally operated in an inject,
hold, dump/measure cycle.” Electrons emitted
from a tungsten filament are trapped between a
dump gate {e.g., L2) and an injection gate (e.g.,
G1), by sequential application of negative voltag-
es, The trapped plasma typl.cally has initial cen-
tral density n,=1.4%107 s -
cm, and length 6.1 = Lependmg on the
choice of injection and drmp-gatfes). The average
thermal energy is estimated to be 1 eV, on the
basis of measurements on similar devices; how-




Some Equations

* Brillouin limit (humber density):

* Space charge:

* (inverse) Focal length:

np

2
ene 1y T

= 1+ 21
¢ 4 € < n(
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=2,uomc2
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Focal length (focussing constant)

e.g. Pozimski and Meusel Rev. Sci. Instrum. 76 063308 (2005)

1 _ezZpl

=kl=—"—F"
f 4 €oEy,
* Non-relativistic, short, weak, parallel, no space-charge lens approximation
[identical to Aymar et al. fphy 08 567738 (2020)]

* Focusing strength of the GL:
k=2Vyp/(r’(y+1)E,) -
[ = plasma length (0.8-1 m) Also expecting: For the current baseline:

pe = plasma density [ng] (5E15 m3) V=65kV
E;. = lon Kinetic Energy (15 MeV)

With expected plasma parameters:

- phsical 1, = plasma radius (3.5 cm) r=3.5cm
e, €g = physical constants r, = anode radius (5-10 cm) E,~15MeV
= space charge (50-85 kV _
One finds ¢ =sp ge ) v=1.016

V4 = Confining voltage (100 - 400 kV)
B = Confining magnetic field (0.1 T)
ng = Broullion limit (~¥5E16)

Pz = p, / ng (~0.1) k=1.783m"2

k = focussing constant (1.2-1.5 m2) pe=0.5 (Pozimski factor)

f =focal length (0.8-0.7 m)




