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Capture work package

* Holistic approach to project, with feedback and synergy

1. Take output from upstream components, laser source (see WP2), as
input

2. Tailor beam as required for transfer line capabilities (see WP6) and
end-station requirements (WP4, WP5)



Beam parameters for Capture section

Stage: preliminary final preliminary final
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Capture system overview (see WP6)
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Simulations — Plasma

Appl. Sci. 11 4357 (2021)
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Lenses - Magnetic field (solenoid)

* Focussing strength proportional to magnetic field strength (current density)

* Normal conducting or Superconducting options
Non-trivial design — Windings, thermal, jackets, etc.
* Financially expensive — Materials, specialists

* Power intensive — Electrical and cooling

* Limited flexibility

Well known technology
Commercially available

* Risk mitigation programme includes preliminary solenoid design efforts



Lenses - Electric field (plasma), Gabor Lens

* Focussing strength proportional to plasma density

* V. high E-fields (& hence focussing strengths) possible
* Dictated predominantly by applied voltages

* Existing Gabor lens attempts use discharge plasma
» Shot-by-shot synchronised with ion source
e Each plasma is quasi-stable
* Plasma established by limited control of initial conditions
* No known successful implementation despite many decades of effort

* Proposed Gabor lens will build upon equilibrated non-neutral plasmas
* Experimental effort!



Efforts elsewhere

Inner
cylinder
held at HV

Figure 1. Internal structure of the IC Gabor lens viewed in longitudinal cross-section. The main components are: 1-central
anode, 2-end electrodes, 3-end flanges, 4-vacuum tube, 5-pancake coils, 6-outer tube, 7-high-voltage feed-through.

Film
Detector

Pulse !
Powered | e.

Solenoid ¥s

Ceramic
window

Appl. Sci. 11 4357 (2021)
Proc. IPAC2016 TUPMY024
Ecloud ‘18 Proc. 143 (2020)

Grounded

copper Phys Rev STAB 14 121301 (2011)

cylinder

Scintillator

NNP

Non Neutral Plasma
Physics Group

Electrode =
system

L

1
-

)

.llﬁ P

=== Feed-throughs
| Lens Alignment and | — o

=

pe Supportframe for
| Lens and pancake coils

il —



Existing non-neutral plasma

PHYSICS OF PLASMAS 13, 022101 (2006) Phyﬁ. Plasmas, Vol. T’ No. T' JU'F 2000 2776

Confinement and manipulation of non-neutral plasmas
Finding the radial parallel temperature profile in a non-neutral plasma using rotating wall electric fields

using equilibrium calculations on experimental data
Grant W. Hart and Bryan G. Peterson

E. M. Hollmann, F. Anderegg, and C. F. Driscoll

A ““rotating wall”” perturbation technique epablesconfinement of up to 3 X 10° electrons or 10° ions
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Existing non-neutral plasma manipulation in

ALPHA at CERN
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* Length~ 10 cm
e Radius ~ 0.5 mm (at 1T)
* Density 10%2-10% m™3

Phys Rev Lett 120 025001 (2018)
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Plasma parameters

Diameter lcm 3cm 3.5cm
Plasma Length 10 cm 1m 1.2 m
Density ~1013 m-3 5x10%4 m-3 5x10%> m-3
Space-charge potential 20V 2 kv 50 kV
Focal length 1000’s m 10’s m 1m
B-field 0.03T 01T 0.15T

Iterative & parameterised approach in preliminary & pre-construction phases
12



Plasma parameters
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Current Apparatus (preliminary activity)
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Proposed Apparatus (preconstruction phase)

e  source

|

Electrodes %

& _—
TS
. - l.ﬁ‘r

15



R&D Philosophy

e Cautious approach
* Built upon decades long experiences at CERN

* [terative approach

e Confirm simulation methods & feedback into multiple designs & apparatus
upgrades

* Vary single parameter (as far as possible)
* Analyse using Machine Learning due to correlations

e Confirm ‘known physics’ (scaling laws) in new apparatus



Risks / mitigations

Being unable to create a suitable plasma:
* Density
* Size (radius, length)
* Timescales

* Possible technical/engineering solutions
 Utilise inbuilt redundancy — e.g. Increase confining fields, compartmentalise plasma
* Modify designs — e.g. Increase apparatus size

e Should be identified in simulations!



Lens options

* End of preconstruction phase report to provide recommendation

* Why not implement magnetic from outset?
* Magnetic lens implementation as challenging as electric lens
Electric lens lay some groundwork (magnet design)
Limited magnetic vs. significant electric flexibility
Significant lifetime cost savings using electric
Significant technology transfer opportunities for electric



Resources

* ITRF Scoping project provides limited preliminary activity resources
* Enables profitable studies for preconstruction phase apparatus design

* Limited by one junior postdoctoral researcher
 |deally 4 fulltime personnel!

 Existing apparatus at Swansea (& internationally) employed for
studies

* Existing international expertise employed for efficiency

* Timeline identifies years 2, 5 (& 7) as critical
» Resource shortfall early can be recovered at later stage (at non-linear cost)



Questions?



