
Investigation of feature recognition in clinical CT images as a step
towards adaptive radiotherapy : Progress Report

Louis Jaugey, Alix Moawad
18 décembre 2019

1 Aims and objectives of the project
Radiotherapy treatment is based on the destruction of cancerous cells by ionizing radiation.

During this process, sane surrounding cells could also be affected by ionizing beam and it
is therefore paramount to minimize its effect on those cells. Recent technologies have been
devised to modulate the beam intensity in space, allowing a treatment highly adapted to a
specific tumour. However, in order to use these techniques to their full potential, the shape
and position of the tumour must be precisely known. The process of contouring the cancerous
region can be long. The aim of this report is therefore to automate this process on 3-dimensional
CT-scans.

2 Progress of the project

Figure 1 – Axial, sagittal and coronal views of
a 3D scan of a phantom

Data visualization A bank of 2D images
representing slices of a 3D scan were at our
disposal. The first step was to familiarize
ourselves with the Python programming lan-
guage and the specific libraries used for image
treatment. We begun by displaying the axial,
sagittal and coronal views shown on Fig. 1.

Figure 2 – Surface plot of the intensity of slice 60

Threshold method The goal of the first
edge detector algorithm was to be able to
determine the shape of the phantom’s outer
boundary. The method used for this detec-
tion is the simplest developed in this pro-
ject. As discussed below, it does have a lot
of limitations.

Fig.2 shows the base image with the in-
tensity represented on the z axis. It gives
a surface in a 3D space. Using this plot,
the height (or the intensity) of the plateau
in green (see Fig.2) can be determined and
its value defines a threshold. The algorithm
then looks for the pixels whose intensity go
from an intensity below this threshold to an
intensity above it. The results of this me-
thod are shown in Fig.3.

1



This algorithm can detect the outer boundary of the phantom, which was the primary goal
of this first algorithm. Some holes inside the phantom are also detected. Indeed, these holes
are filled with air. Their intensity is then comparable with the one outside the phantom : we
go from an intensity below the threshold to an intensity above it (or the opposite) by going
through these holes.

(a) Initial image of slice 60 (b) Threshold method applied to slice 60

Figure 3 – Results of the threshold method

As one can see with the results presented in Fig. 3, this method cannot detect the different
regions in the phantom if their intensity is above the threshold. Most holes are therefore not
displayed on Fig. 3 and this algorithm is not applicable for further use.

Figure 4 – Intensity of 200th row (slice 60)

Derivatives peaks in 1D This method
is based on the variation (or the derivative)
of the intensity. Unlike the previous algo-
rithm, this should allow the detection of all
the shapes inside the phantom. This method
was first applied to a single row of the ma-
trix representing the image. The intensity of
the 200th row is shown on Fig.4.

The first step in the development of this
algorithm was to determine the derivative of
the intensity. Since a single row was studied,
only the horizontal derivative was computed
using the centred finite differences :

∂I

∂x

∣∣∣∣
i

≈ Ii+1 − Ii−1

2h
∝ (Ii+1 − Ii−1) (1)

where Ii is the intensity of the ith pixel in
a chosen row and h is the distance between
two pixels. Since h is constant, we only consider the intensity difference in (1). Using this
property, the directional derivative of I is computed on a single row of the image. The peaks

2



of the derivative give the points where the rate of change of the intensity is locally maximum.
This is the case when we move from one region of the phantom to another.

Figure 5 – Intensity of 200th row with peaks sho-
wed in red crosses (slice 60)

So the use of the findpeaks function
(from scipy.signal library) on the deri-
vative should give the boundaries in the
phantom. Before using findpeaks, the image
needed to be smoothed since the original
one was noisy. To do so, a running mean
was applied on a horizontal subset of size
5. The result obtained with this method is
presented in Fig.5. Comparing this figure
with Fig.4, one can see the smoother as-
pect of the second image.

The obtained peaks on Fig.5 give the
borders of the different regions. However,
there seems to be a bias with the findpeaks
function. Indeed on Fig.5 the peaks are se-
lected sooner (one pixel sooner) when the
derivatives is negative than when it is po-
sitive. Though a single pixel of difference is
not such an issue. Moreover, findpeaks re-
quires a threshold that defines the minimal

height of the peaks and this choice is arbitrarily. For this reason a different method, based on
statistical values, was explored and presented in the following section.

Statistical method on the derivatives In the same way as the previous method, we focused
on directional derivatives of intensity. Here, we use a subset of size n on which the mean µ1 and
variance σ1 of the intensity is computed. The mean intensity µ2 of the next subset is compared
with µ1 and σ1 in the following way :

µ2 > µ1 + Cσ1 (2)

where C is a given coefficient.
If this condition is fulfilled then the pixel in the middle of the second subset considered as a

contour. The condition (2) can only be true for a positive derivative (from a lower to a higher
intensity), the condition must therefore be tested in all four directions (i.e. left to right, top to
bottom and so on). This method was applied on the entire image and the different steps are
presented in Fig.7.

3



Left −→ Right Top −→ Bottom

Right −→ Left Bottom −→ Top

Figure 7 – The different steps of the statistical method.

Figure 8 – Statistical method results

This technique has a clear issue with noise.
A simple algorithm that removes the isola-
ted pixels was developed and the final result
is shown on Fig.8. This algorithm looks for
pixels which are considered as a boundary and
remove them if they are the only one in a 3×3
matrix centred on this pixel.

This method is able to detect the dif-
ferent regions inside the phantom. However,
the boundaries are not smooth and above all,
some of them are not closed. Furthermore, al-
though most of the noise was filtered, there
still remain some artefacts.

Since the results obtained with this me-
thod were not satisfying, we decided to fur-
ther develop the previous algorithm.

4



Derivatives peaks in 2D The primary difference with the first method presented before is
that a Gaussian filter was applied to the image. This filter does a convolution product between
the intensity and a 5× 5 matrix whose components are given by a 2D Gaussian function with
variance σ. The function gaussian filter is implemented in the scipy.ndimage library and its
arguments are the raw image and σ. We then compute the directional derivatives of the intensity
in both x and y directions as you can see on Fig.9.

(a) Horizontal derivatives (b) Vertical derivatives

Figure 9 – Directional derivatives of the intensity

Figure 10 – Final results with the directional
derivatives method

In order to define the boundaries, we
used a method of "edge tracking by hyste-
resis". The method requires 3 categories of
pixel : high, medium and low intensity pixels.
Pixels from the first category are automati-
cally considered as a boundary, those from the
second category are a boundary only if they
are connected to pixels from the first cate-
gory. Finally, pixels from the last category are
ignored. To assign each pixel to its category,
we apply find peaks twice with two different
thresholds. If a peak intensity is above both
thresholds, it is a high intensity pixel, if it is
in between, it is in the second category and it
is ignored if it is below both thresholds. Since
this method is used on 2D images, find peaks
must be applied, on both rows and columns
of the derivatives matrices.

Laplacian The two previous codes used directional derivatives of the intensity matrix. In
order to find the contours, we had to find the maximums of the derivatives. We could also work
on the Laplacian operator instead of the derivatives. Indeed, the maximums of the derivatives
are equivalent to the zero crossings of the Laplacian operator. We chose to use central finite
difference approximations to compute the 2nd order derivative of the intensity matrix. The zero

5



crossings are detected in both x- and y-directions. We will give an example on one row : for one
pixel studied, if the pixel value on its left is negative and the pixel value on its right positive (or
the opposite), then the pixel in between is considered as a zero crossing. This pixel will then be
part of a border. However, this method also takes into account background noise and it could
give false zero crossings and so false borders. To avoid this, only a certain percentage of the
brightest contours are considered as borders. This quantity is arbitrary and can be optimize
for each slices of the phantoms CT-scan. The algorithm of isolated pixels is once again used
to remove noise. As you can see on Fig.11b, the contours are not well defined for every holes.
Some of the holes inside the phantom are not closed and other are not displayed. This can
be explained with Fig.11a. Computing the Laplacian with 2nd-order finite differences seems
to make disappear contours with the lowest contrasts so that they could not be differentiated
from the background. The Laplacian method could induce the loss of information unlike the
Derivatives method.

(a) Horizontal derivatives (b) Vertical derivatives

Figure 11 – Laplacian method results

Figure 12 – Contours found by the
Canny filter

Canny Filter In this section, we used the Canny
edge detector already implemented in the ski-
mage.feature library. This algorithm is a standard me-
thod in 2D image treatment. Canny edge detector is
able to find contours in a 2D image and works as fol-
lows : a gaussian filter is first applied to the image to
reduce the image’s noise. The intensity gradient is then
computed at every point of the image : the contours
are defined at local maxima of the gradient. The final
step is the edge tracking by hysteresis as explained in
the Derivative peaks in 2D method. The matrix ob-
tained with the Canny filter is displayed in Fig.13. At
this stage of the algorithm, two categories of pixels
are defined : the ones considered as forming borders
and the others. Only the category containing pixels
forming borders will be of interest here. For now, we
only know if these pixels are part of a border but we
do not know which one.

6



The next step is then to differentiate borders within this category of pixels. To do so, we
iterate over the matrix given by the Canny Filter. When we find a pixel belonging to the
category of interest, this pixel is considered as part of a border numbered 1. We then search
recursively around this pixel for the other pixels belonging to the same border. The same process
is repeated as many times as the number of different borders found in the image. To see better
the colors used to describe the different borders, we filled each borders with the color of their
contour. The result is shown on Fig.13. To be more coherent, we then decided not to use random
colors but colors defined as the mean intensity inside each border. As you can see on Fig. 14,
we retrieved the initial image but with each border detected.

(a) Separation borders result (b) Filled borders result

Figure 13 – Separation borders results on slice 60 with randomly colored and filled borders

(a) Initial image of slice 60 (b) Canny filter result with holes filled with mean
intensities

Figure 14 – Comparaison between the initial slice 60 and final result by applying Canny filter
as described

However, parameters must be given in order to use this implemented function. The low and
high thresholds are defined quite arbitrarily : the aim was to display as much pixels as possible
without considering noise as borders. So a balance had to be found in order to get as close as
possible to our goal.

7


