
Investigation of feature recognition in clinical CT images as a step
towards adaptive radiotherapy : Progress Report

Louis Jaugey, Alix Moawad
4 décembre 2019

1 Aims and objectives of the project
Radiotherapy treatment is based on the destruction of cancerous cells by ionizing radiation.

During this process, sane surrounding cells could also be affected by ionizing beam and it
is therefore paramount to minimize its effect on those cells. Recent technologies have been
devised to modulate the beam intensity in space, allowing a treatment highly adapted to a
specific tumour. However, in order to use these techniques to their full potential, the shape
and position of the tumour must be precisely known. The process of contouring the cancerous
region can be long. The aim of this report is therefore to automate this process on 3-dimensional
CT-scans.

2 Progress of the project

Figure 1 – Axial, sagittal and coronal views of
a 3D scan

Data visualization A bank of 2D images
representing slices of a 3D scan were at our
disposal. The first step was to familiarize
ourselves with the Python programming lan-
guage and the specific libraries used for image
treatment. We begun by displaying the axial,
sagittal and coronal views shown on Fig. 1.

Figure 2 – Surface plot of the intensity of slice 60

Threshold method The goal of the first
edge detector algorithm was to be able to
determine the shape of the phantom’s outer
boundary. The method used for this detec-
tion is the simplest developed in this pro-
ject. As discussed below, it does have a lot
of limitations.

Fig.2 shows the base image with the in-
tensity represented on the z axis. It gives a
surface in a 3D space. Using this plot, the
height (or the intensity) of the plateau (see
Fig.2) can be determined and its value de-
fines a threshold. The algorithm then looks
for the pixels whose intensity go from an
intensity below this threshold to an inten-
sity above it. The results of this method are
shown in Fig.3.

1



This algorithm can detect the outer boundary of the phantom, which was the primary goal
of this algorithm. Holes inside the phantom are also detected. These holes are indeed filled with
air, the intensity therefore comparable with the one outside the phantom.

(a) Initial image of slice 60 (b) Threshold method applied to slice 60

Figure 3 – Results of the threshold method

As one can see with the results presented in Fig. 3, this method does not allow the detection
of the different region in the phantom if their intensity is not lower than the threshold. A lot
of holes are not displayed on Fig. 3. This is therefore not applicable for further use.

Figure 4 – Intensity of 200th row (slice 60)

Derivatives peaks in 1D This method
is based on the variation (or the derivative)
of the intensity. Unlike the previous algo-
rithm, this should allow the detection of all
the shapes inside the phantom. This method
was first applied to a single row of the ma-
trix representing the image. The intensity of
the 200th row is shown on Fig.4.

The first step in the development of this
algorithm was to determine the derivative of
the intensity. Since a single row was studied,
only the horizontal derivative was computed
using the centred finite differences :

∂I

∂x

∣∣∣∣
i

≈ Ii+1 − Ii−1

2h
∝ (Ii+1 − Ii−1) (1)

where Ii is the intensity of the ith pixel
in a chosen row and h is the distance bet-
ween two pixels. Since h is constant, we only
consider the intensity difference in (1). Using this property, the directional derivative of I is
computed on a single row of the image. The peaks of the derivative gives the points where the
rate of change of the intensity is maximum. This is the case when we leave one region of the

2



phantom to another one. So applying the function findpeaks (from scipy.signal library) on the
derivative should give the boundaries in the phantom. Before using findpeaks, the image needed
to be smoothed since the original one was noisy. A running mean was applied on a horizontal
subset of size 5, just before findpeaks. The result obtained with this method is presented in
Fig.5.

Figure 5 – Caption

Comparing this figure with Fig.4, one
can see the smoother aspect of the second
image. The obtained peaks indeed give the
borders of the different regions. However,
there seems to be a bias with the findpeaks
function. On Fig.5 the peaks are selected
sooner (one pixel sooner) when the deriva-
tives is negative than when it is positive.
Though a single pixel of difference is not
such an issue. Moreover, findpeaks requires
a threshold that defines the minimal height
of the peaks and this choice is arbitrary.
For this reason a different method, based
on statistical values, was explored and pre-
sented in the following section.

Statistical method on the derivatives
In the same way as the previous method,
we are interested in the directional deriva-

tives of the intensity. Here, we use a subset of size n on which the mean µ1 and variance σ1 of
the intensity is computed. The mean intensity µ2 of the next subset is compared with µ1 and
σ1 in the following way :

µ2 > µ1 + Cσ1 (2)

where C is a given coefficient.
If this condition is fulfilled then the pixel in the middle of the second subset considered as

a contour. The condition (2) can only be true for a positive derivative (from a low to a high
intensity), the condition must therefore be tested in all four directions (i.e. left to right, top to
bottom and so on). This method was applied on the entire image and the different steps are
presented in Fig.6.

3



(a) Left −→ Right (b) Top −→ Bottom

(c) Left −→ Right (d) Bottom −→ Top

Figure 6 – The different steps of the statistical method.

Figure 7 – Caption

This technique has a clear issue with noise.
A simple algorithm that removes the isola-
ted pixel was developed and the final result is
shown on Fig.7.

This method is able to detect the dif-
ferent region inside the phantom. However,
the boundaries are not smooth and above all,
some of them are not closed. Furthermore, al-
though most of the noise was filtered, there
still remain some artefacts.

Since the results obtained with this me-
thod were not satisfying, we decided to fur-
ther develop the previous algorithm.

Derivatives peaks in 2D The first difference with the method presented before is that a
Gaussian filter was applied to the image. This filter does a convolution product between the
intensity and a 5 × 5 matrix whose components are given by a 2D Gaussian function with
variance σ. The function gaussian filter is implemented in the scipy.ndimage library and its
arguments simply are the original image and σ.

4



The same process was then applied as explained above on the whole matrix in both x and
y direction. The results are presented in Fig.8.

(a) Original result (b) With the noise filter applied

Figure 8 – The different steps of the statistical method.

As for the statistical method, the contours are not really smooth. Nonetheless, these contours
now define closed regions and the noise was efficiently eliminated by the filter.

Laplacian The two previous codes used directional derivatives of the intensity matrix. In
order to find the contours, we had to find the maximums of the derivatives. We could also
work on the Laplacian operator instead of the derivatives. Indeed, looking for the maximums of
the derivatives is equivalent to searching for the zeros of the Laplacian. We chose to use finite
difference approximations of the second derivative of the intensity matrix : central inside the
pixel image and backward and forward on the edges of the image.

Figure 9 – Contours found by the
Canny filter

Canny Filter In this section, we tried to use the
Canny edge detector already implemented in the ski-
mage.feature library. This algorithm is a standard me-
thod used in image treatment. Canny edge detector is
able to find every contour in a 2D-image and works as
follow : a gaussian filter is first applied to the image to
reduce the image’s noise. Then the intensity gradient
is computed at every point of the image. The contours
are defined at local maxima of the gradient. The final
step is the edge tracking by hysteresis. This method
needs two arguments called low and high thresholds,
given to the function. For each point of the intensity
gradient, the same process is used : if the pixel inten-
sity is under the low threshold, the point is rejected. If
the pixel intensity is over the high threshold, the point
is accepted and considered as forming a contour. If the
pixel intensity is between the high and the low thre-

5



shold, the point is only accepted if it is linked to a point already accepted. The matrix obtained
with the Canny filter is displayed in Fig.10

Figure 10 – On verra

At this stage of the algorithm, two categories of
pixels are defined : the one (a) considered as forming
a border and the others. The next step is to diffe-
rentiate each border inside the image. In order to es-
tablish which pixel belongs to which border, we ite-
rate over the matrix given by canny filter. When we
arrive at a pixel belonging to the category (a), this
pixel is considered as part as border number 1 and we
then search recursively around this pixel for the other
pixels belonging to the same border. The same process
is repeated as many times as the number of different
borders found in the image. To see better the different
colors used to describe the different borders, we chose
to fill each borders with the color of their contour as a
first draft. The result is shown on Fig. 10. To be more
coherent, we then decided not to use random colors
but colors defined as the mean intensity inside each border. As you can see on Fig. 11, we
retrieved the initial image but with each border detected.

However, a few arguments must be given.

(a) (b)

Figure 11

3 Remaining work
The algorithm developed up to this point work in the particular case of a phantom. Real

images will probably not have such well defined region and their detection might be far more
complicated. There is still some space for improvement to some of the methods used, in parti-
cular, the Laplacian and the directional derivatives will be further developed.

Although the different methods developed were applied to 2D images, the final goal of this
project is to develop an algorithm for 3D features recognition. A 3D version of the algorithm

6



was tested where the edges were detected (with the Canny filter) on 2D slices of the scan and
then grouped together in 3D. However, there seems to be a stack overflow due to deep recursion
with the function grouping boundary together. This problem still has to be overcome.

Finally, the latest algorithm used for pattern recognition often use Machine Learning (ML)
methods. This is a path we also would like to explore. We are complete beginners to ML so we
have the learn the basics of this field first and then apply them to real images.

-Improve current codes (laplacian and directional derivatives)

-3D
-Machine Learning

4 New timeline and expected results
For the end of this term : first two points above
For second term : Machine learning + report writing

7


